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Calculation of the Undulator Radiation Spectra

S.H. Kim

Argonne National Laboratory

The frequency spectral and angular distribution of undulator radiation has
been calculated for the case of a spatially periodic sinusoidal magnetic
field. The results are expressed in terms of an integral form and also in a

series of Bessel functions.

1. Introduction

The properties of synchrotron radiations from undulators have been
investigated by several authors 1—4. Different authors have different
expressions for the frequency spectral and angular distribution of the

radiation. The purpose of this report is to clarify different notations

and expressions of the radiation by deriving the spectra in detail.

Some notations used in this report are following:

length of the undulator period,

u
N = number of the periods,
Bc = electron speed,
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vy = -8y,
B*c = average electron velocity in the Z-direction,
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2. Electron Motion in a Transverse Undulator

The coordinate system of Fig. 1 is used in this report in order to relate
the angular dependence of the radiated photon intensity with the rms beam
size and divergence of an electron beam. Let us consider that
relativistic electrons propagate along the Z~direction, the middle of an
undulator of length XUN is located at the origin of the coordinate
system, and the undulator radiation is observed at point P located at a

great distance R (R >> AuN).

For a spatially sinusoidal magnetic field of the undulator
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the equation of the motion of an electron
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For a highly relativistic electron with small amplitude in the X-

direction (wo << 1), the solutions of B and T may be expressed as
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where the xo/c and yo/c are initial velocities of the electron in the X-
*
and Y-directions, respectively. In the Z-direction, the average B may

be approximated as
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Calculation of the Undulator Spectra

The energy radiated per unit bandwidth by an electron into a unit solid

angle is given by
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For small angles of 6 and ¢, and R >> r, the unit vectors of n and ;o in

Fig. 1 may be approximated as
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Using Eqs. (3) and (6), the exponential factor in Eq. (5) becomes
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To the order of Y_z, Eq. (8) can be further simplified,
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where 46 and Ad are the angles between the direction of the observation

and the initial angle of the electron in the beam,

A8 = 6 - xc;/c

by = ¢ = yo/c. (10)



Using Eqs. (2) and (6), the approximation of o ox (3 X §) to the order of
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Substituting Eqs. (7) and (12) into Eq. (5), one obtains
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In the moving frame along the Z-direction with velocity B*c, electron

*
oscillates with an angular frequency Y W, . In the laboratory frame Y W,

is Doppler-shifted to have the fundamental harmonic w,,
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Then, Eq. (9) becomes
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Frequency spectral and angular distribution of Eq. (12) can be exactly

expressed in terms of an integral form (see Appendix A for details)
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Here the effects of the finite length of the undulator on the
distribution of the radiation is taken into account by the function
W(v,N). The functions 8y and gy are independent of N. The factor W(v,N)
has principal maxima when v is positive integers. Between two adjacent
principal maxima W(v,N) vanishes (N-1) times at v = m/N. It should be
noted that v is defined as the ratio of w/wl. As shown 1in Eq. (13), the
fundamental harmonic wy is a function of the observation angles. Here 84
and gy are the components of the polarization in the X- and Y-directions,
respectively. When the observation point P is not on the Z-axis, the

polarization angle depends on 48 and A¢.

Equation (12) can also be expressed in terms of Bessel functions (see

Appendix B for details):

AT _ 4erN°s iy (
d_Q_ —— Cc -‘c) [ / /+ ‘(49 r4¢‘)

where . 6[;* 62),

K2 3/ .p3 2
[+ (204 44%) . £ 2
foves, - S L5

5:3 = XA¢ S', (17)



[
o]
rt
=3
(1]
—
[
B
oS
ct H
o]
"
-
+
8

Fp #) = — §(0-#8,),

Special Case

In the forward direction (A8 = 0, 4¢ = 0, 8 = 0, ¢ = 0),
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Using the Fourier expansion of Bessel functions of Eq. (Bl), the integral

of Eq. (19) becomes
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To have non-vanishing values of the integral
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Equation (21) vanishes at even integers of v.

For an electron beam of current I and bandwidth Aw of the spectra,

numerical values of Eq. (21) in terms of the number of photous is given
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The total photon flux f,,(w) over the diffraction solid angle
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Expression in the Spherical Coordinate System

Derived formulae in the coordinate system of Fig. 1 can be expressed in
the spherical coordinate system of Fig. 2. Here x; and y; are assumed to

be zero.
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Appendix A. Derivation of Eq. (15)

The integral of the first term of G, in Eq. (13) in the region of the

undulator is
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where w t = Nm+a is substituted. The sign of psina depends on the number of
the undulator periods N. To avoid this, one end of the undulator will be
assumed to be at the origin of the coordinate system. Then,
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By substituting o = 8, a = 27+8, e+es a = 2(N-1)7+6, for each integral,
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Outside of the undulator where K = 0 (p=q=0),
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The integral of the second term of Gy 1s
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The phase factor ei ™ 4n Eqs. (AS) and (A6) is due to the change of the
undulator location in the coordinate system. The calculation of gy is
the same as that of the first term of g, except the angular factor of A4¢

instead of A48.

Appendix B. Derivation of Eq. (17)

Using the Fourler expansions of Bessel functions
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the first term of G, in Eq. (13) becomes
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In the above derivations w ot = NG and n~2m = k are substituted.

After calculating the integral Eq. (B2) becomes
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Calculating the integral in Eq. (B3) and using a recursion relation for

Jn(x), namely
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From Eqs. (Bl) and (B4) one obtains Eq. (17). The parameters p,dq, and Vv are

given in Eq. (14).
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Fig. 1. The angle 6 is in the XZ-plane and angle ¢ is in the YZ-plane of
the coordinate system. The unit vectors Ko and K are from the

origin O and from the election e to P, respectively.



Fig. 2. Spherical coordinate system.



